
new left review 113 sept oct 2018 69

richard stallman

TALKING TO THE MAILMAN

New Movements, New Media—18

Interview by Rob Lucas

You’re widely recognized as the world’s leading campaigner for software free-
dom, having led the development of the gnu operating system. Today, the 
gnu/Linux operating system, and free (libre) software more broadly, under-
pin much of the internet, yet new structures have emerged that can wield a 
great deal of power over users. We’d like to talk to you about the present com-
puting landscape and the political relevance of free software. But may we start 
by asking about your formation, as a programmer and as a thinker—how did 
it all begin?

I grew up in Manhattan, born in 1953. I was a behavioural 
problem—I couldn’t go to a public school without getting in 
trouble—and started working with computers at an early age. In 
1969, during my last year of high school, an ibm lab let me come 

and use their computers. In 1970 I had a summer job there. They gave 
me a project to do, implementing a certain algorithm to see how well 
it would work. I finished that in a few weeks, so they let me spend the 
rest of the summer being paid to write whatever I felt like. I went to 
Harvard to study physics, and carried on programming there. Towards 
the end of my first year I started visiting computer labs to look at their 
manuals, to see how the computers differed. When I visited the Artificial 
Intelligence Lab at mit, they didn’t have much by way of a manual, 
because they had developed their own time-sharing system. The admin-
istrator there decided to hire me more or less straight away. So although 
I graduated from Harvard in 1974, I had actually been an employee at 



70 nlr 113

mit for three years. Harvard’s computer was a lot better to play with 
than ibm’s, but it didn’t have a lot of memory, whereas mit’s computer 
at the ai Lab had plenty. Not only that, they let me change the time-
sharing system; in fact, that was my job—they hired me to work on that 
system. I added lots of features to lots of different programs—whatever 
I thought of, or people suggested to me, that seemed like a good idea, I 
would implement and then people would use it. And this was absolutely 
delightful—and gratifying to make things that people used and appreci-
ated—so I kept working there. From that point on, I did programming 
using the machine at mit.

Were there any people at mit who were influential in how you learned 
programming?

There was Richard Greenblatt, who later started the Lisp Machine pro-
ject; to some extent there was Don Eastlake. And Bill Gosper, although 
he was more of an inspiration in terms of hacking and math than in 
how to program. There were a lot of smart people there. But also I was 
inspired by the attitude at the mit ai Lab, where the hackers said: ‘We’re 
not going to let the administrators tell us how to do things; we’re going 
to work on what they need, but we will decide how; and we won’t let them 
implement computer security to restrict us with.’ This was a conscious 
decision of the hackers who had written the time-sharing system, which 
they’d started a couple of years before I got there. Their attitude was, 
yes, the administrators could fire us, but we were not going to suck up 
to them. They weren’t going to stand being treated like ordinary employ-
ees. I wouldn’t have had the strength to do this on my own, but as part 
of a team, I learned it. We were the best, and most of us weren’t getting 
paid an awful lot—any of us could have got a much better-paying job 
someplace else if we’d wanted. We were there because we were free to 
improve the system and do useful things, the way we wanted to, and not 
be treated like people who had to obey all the time. 

And this had the consent of the ai Lab’s directors? 

To some extent. The Lab’s leaders, Marvin Minsky and Patrick Winston, 
were perfectly content with it. Minsky, I was told, didn’t like having 
doors locked, because he had a tendency to lose his keys. So the doors 
to the Lab and all the offices inside it were always open. There were no 



stallman: Interview 71

passwords for the time-sharing system. There was no file protection—
literally: anybody could sit down at any console and do anything. 

To what extent do you think that the collective ethos at the mit ai Lab back 
then—which is a striking feature of this history, and is typically cited in the 
origin stories of free and ‘open source’ software—was premised on the fact that 
you were working with a different kind of technology?

It had to do with the fact that we used a shared computer. The pdp-10 
was the size of a room and cost a million dollars, so to get another one 
was not easy. Time-sharing started in the 1960s, but even in 1980 no 
one thought we could afford a computer for each person—not a real 
computer. Yeah, there were these toy pcs, but what could you do with 
those? The point is that when people share a computer, either they do so 
as a community, where they trust each other and resolve disputes, or it’s 
run like a police state, where there are a few who are the masters, who 
exercise total power over everyone else.

So you’d agree that the origins of the free-software movement had something 
to do with the shared use of a computer?

Yes and no. At the mit ai Lab, the hackers were the authors of the soft-
ware and were also in charge of the machine. Perhaps guided by the 
spirit of Marvin Minsky, we developed a culture of welcoming everyone to 
come and work on everything, and share. So, we resisted security meas-
ures. Anyone could look at anyone else’s terminal through the system. If 
you had real work to do, you didn’t do that very much, because you were 
busy. But the kids, teenagers coming in over the internet—Arpanet, as it 
was then—they would watch, and they would learn things. They would 
also watch each other and notice if someone was causing harm. 

So they could watch people programming?

Yes, they could. Our way of dealing with kids coming in over Arpanet 
was to socialize them. We all participated in that. For example, there was 
a command you could type to tell the system to shut down in five min-
utes. The kids sometimes did that, and when they did we just cancelled 
the shutdown. They were amazed. They would read about this command 
and think, surely it’s not going to work, and would type it—and get an 



72 nlr 113

immediate notification: ‘The system is shutting down in five minutes 
because of . . . ’ 

It sounds like chaos.

Except it wasn’t, you see. There was always a real user, who would just 
cancel the shutdown and say to that person, ‘Why did you try to shut the 
machine down? You know we’re here using it. You only do that if there’s 
a good reason.’ And the thing is, a lot of those people felt outcast by 
society—they were geeks; their families and their fellow students didn’t 
understand them; they had nobody. And we welcomed them into the 
community and invited them to learn and start to do some useful work. 
It was amazing for them not to be treated as trash.

And these kids were primarily coming in over Arpanet?

A few would come in physically, but most came in over Arpanet.

One thing that’s striking about that culture—which is legendary in the his-
tory of computing—is that it flourished in an institution largely funded by the 
American Defense Department. Do you find it paradoxical that this sort of 
freedom could develop under the carapace of the Pentagon?

It’s paradoxical, but it actually makes perfect sense. They wanted to fund 
some research. They didn’t need to make it be done by jerks and down-
trodden people—they just wanted it to get done. During the seventies, 
a number of the hackers at the ai Lab were bothered by the fact that it 
was funded by the us military. I thought that what mattered was what 
we were doing, not where the money came from, and at some point I 
reached a conclusion that funding from business was much worse.

Worse than funding from the military?

Much worse, because the businesses would try to restrict the use of what 
you did.

Nevertheless, this was the state that was bombing Vietnam.

Yes, it was. I was against the Vietnam War, just like everyone else in 
the Lab, but we weren’t helping them bomb Vietnam. Our work wasn’t 



stallman: Interview 73

particularly military, or even likely to be used in the short term. For 
instance, Greenblatt did a lot of work on chess programs; I mostly 
worked on improving various system programs—I developed the first 
Emacs text editor during that time.

At what point did that culture change—and how?

Even in the ai Lab, by the late 70s there was pressure from the admin-
istration to try to get things under control, which I explicitly resisted. 
Once I was in the elevator with an administrator who had instituted 
some forms that every user was supposed to fill out, and I hadn’t. He 
said, ‘It seems you haven’t filled out the user forms.’ I replied some-
thing like, ‘Yes, I don’t see a reason to.’ He said, ‘Well, you really should 
fill them out, otherwise somebody might delete your directory, if it isn’t 
clear what it’s for.’ I said, ‘That would be rather a shame, since some 
of the system source code currently resides in my directory—it would 
be rather a problem for the Lab if it got deleted.’ The thing is, I could 
do things and he couldn’t. But by around 1980, somebody insisted on 
putting on passwords on the time-sharing machines at the mit Lab for 
Computer Science. I’d been getting paid half and half by the ai Lab and 
the Laboratory for Computer Science, but at that point I switched to just 
the ai Lab, because I wouldn’t do anything for lcs anymore.

Did other people have the same reaction?

Many did, but the others basically got worn down, and eventually gave 
in. Over the period of the seventies, the spirit of resistance got worn 
down in others, whereas it got strengthened in me.

How do you explain that?

I don’t know. I guess I had found something worth being loyal to, and I 
basically had nothing else.

It was at this point too that commercial ventures began dividing the program-
mers at the ai Lab?

It was a process that happened over a few years. Greenblatt started the 
Lisp Machine project—Lisp was a particularly powerful programming 
language, in which a program has a simple, natural representation as 



74 nlr 113

data that other programs can operate on. Everyone at the Lab agreed 
it would be great to start a company to make Lisp Machines, so other 
people could have them, but there was disagreement about how to do 
it. Greenblatt wanted to start a company without outside investors, but 
the other hackers questioned his business acumen. So he brought in 
Russell Noftsker—the man who had hired me in 1971, when he was the 
administrator of the ai Lab. Noftsker then decided to jettison Greenblatt 
and start a company with investors, in the usual way. So around 1980 
two rival companies got started—the second, Symbolics, by stabbing 
Greenblatt in the back. I didn’t want to join either company—I just 
wanted to keep working at the ai Lab, which for me was ideal.

Were similar dynamics of commercialization affecting the hacker culture else-
where, at Stanford for example?

I don’t know. I visited Stanford, but I wasn’t there enough to know what 
sort of things were going on. 

How did the rivalry of these two companies affect the situation at mit?

To begin with, both Symbolics and lmi, Greenblatt’s company, 
co operated in maintaining the mit Lisp Machine system. But in 1982—
in fact on my birthday, March 16—Symbolics announced that mit could 
no longer include its changes into the mit version of the system, which 
meant everybody had to choose a side: the Symbolics system or the mit 
system, used also by lmi. And, as a neutral who had just been attacked 
and given an ultimatum, I really had no honourable choice except to 
fight that side. I always thought of this as war, and I understood my part 
as a rearguard action. My goal was to keep the mit version of the sys-
tem viable long enough for lmi to escape being destroyed by Symbolics, 
which was its goal. They were making all their improvements available 
to mit, of course. But I didn’t want to read their code and then write 
something similar, so I looked at their documentation and then imple-
mented a comparable feature—not necessarily the same, because I had 
a chance to do it better, and often I saw a better way to do it.

Except that there were, what, a dozen of them and one of you?

There were more like six main guys. But, yes, I had to match what they 
did, so I worked very, very hard. But this showed me that I could do 
something big like gnu.



stallman: Interview 75

Right. So that was an education, in a sense?

It was. It was an education in concentrating very hard on getting soft-
ware features working—making them as clean as I could, and getting 
them working reasonably soon. Anyway, they couldn’t destroy lmi this 
way, but they could work on another generation of computer, which lmi 
couldn’t. And in 1983 their computers, their newer versions, started to 
arrive, and the mit system couldn’t run on them. I saw that I would 
be unable to continue what I was doing. But I also saw that I had done 
enough—it had been a successful delaying action; it had enabled lmi 
to get going and start developing another model of computer, and hire 
some people to do the software for it. So then I decided, I don’t want to 
spend the rest of my life punishing Symbolics for its aggression—I want 
to try to build a replacement for what they destroyed.

You mean, the culture at the ai Lab?

The culture—but above all the hacker community, and a system that 
we could work on freely and share. But having a free-software com-
munity depends on having a body of free software you can use—and 
that’s why I had to develop another operating system. The only way 
there would be a free operating system was if somebody wrote one for 
modern computers—ordinary computers, rather than special ones, like 
the Lisp Machine. By the 1980s, lots of people were buying ibm pcs. 
Although they were still weak at that stage, I realized that future pcs 
would be able to run the system I was going to develop. That meant it 
was best to make a system compatible with Unix, which gave me the 
basic parameters of gnu.

It’s interesting that you describe it primarily in terms of creating a community, 
rather than creating the technology.

The community needs the technology—you can’t have a community 
in which software-sharing is your way of life unless you’ve got free 
software to do everything. The point is, the software had the purpose 
of making the community possible. But part of the idea was that I 
wanted everyone to be part of this community—the aim was to liberate 
all computer users. At the same time, I was getting one lesson after 
another in the injustice of non-free software. mit had bought a new 
machine which ran Digital’s time-sharing system, twenex, instead of 
the one we’d been developing; it had security features that allowed a 



76 nlr 113

group of users to seize power over the machine and deny it to others. I 
saw the repressive rules for student computers introduced at Harvard. 
I suggested they apportion a computer to each group of students liv-
ing together, and let them all run it; those who were interested would 
develop the skill of system administration, and they would all learn to 
live together as a community by resolving their own disputes. Instead 
I was told: ‘We’ve signed contracts for proprietary software, which say 
we’re not allowed to let any of the students get at them.’ This was a pro-
prietary operating system that made it possible to have programs that 
people could run but couldn’t actually read. It taught me that non-free 
software was a factor in setting up a police state inside the computer—
which at the ai Lab was generally understood wisdom; I wasn’t the first 
to call that ‘fascism’. I was also the victim of a non-disclosure agree-
ment, which taught me about the nature of those agreements—that 
they are a betrayal of the whole world.1

The gnu/Linux operating system now constitutes a very significant part of 
global computing infrastructures, and has countless contributors globally. 
How did you go about writing gnu at the start—to what extent was it a col-
lective endeavour?

In the early days there were not very many people participating. 
Gradually, more joined. I tried approaching companies to see if they 
might fund the effort, but none did. I’d announced the gnu project on 
Usenet in September 1983—Usenet was a pre-Internet system for net 
news, set up by at&t. Initially only one person actually wanted to work, 
so there were just two of us when we started in January 1984. At that 
point, I formally quit my job at mit, but the head of the Lab, Patrick 
Winston, offered me the use of the Lab’s facilities to do the develop-
ment work, which was helpful. In 1985 we set up the Free Software 
Foundation and published the gnu Manifesto; that attracted more vol-
unteers. Coming up with replacements for all the components of Unix 
was a big job, and I had to find people to do each part. This stage, I’d 
say, finished around 1990, when I got to be a little famous, got an award 
and got more attention. 

This was more or less coterminous with the development of the modern inter-
net, in terms of the publication of Berners-Lee’s proposal for the worldwide 

1 See Sam Williams, Free as in Freedom: Richard Stallman’s Crusade for Free Software, 
Sebastopol, ca 2002, ch. 1 (also available online in an edition revised by Stallman).



stallman: Interview 77

web. What explains the attention you were getting at that moment—the 
attractions for programmers of the free-software movement?

We’d drawn up the gnu General Public Licence, which guarantees end 
users the freedom to run, study, share and modify the licenced software 
program. It was the first ‘copyleft’ licence for general use—meaning 
that software deriving from that program has to be distributed under 
the same gpl terms. Most of all, we were producing software that lots of 
programmers were finding useful because it was more reliable than the 
commercial proprietary alternatives. Someone did an experiment, testing 
the various programs—versions of Unix, or our free replacements—to 
see whether the program would crash. Ours were the most reliable. 

Could you explain why they were so reliable?

I guess because we really cared—and we would really fix bugs that the 
users reported. Not only that: users could send us fixes, as well as just 
bug reports. We had a policy of thanking users for their bug reports. The 
main milestone was passed in 1992, when we had a complete system, 
using the kernel designed by Linus Torvalds. We’d started developing a 
kernel in 1990, but the design I chose turned into a research project—it 
took six years to get a test version. So Linux is the kernel that we actually 
use with gnu, for the most part.

And Torvalds fortuitously used a gnu licence to do it?

Not initially. In 1991, Linux was proprietary. In ’92, he re-released it 
under the gnu gpl.

You persuaded him?

No, I didn’t—I had never heard of him at that point. But he had, I believe, 
seen me give a talk at the Helsinki University of Technology. When he 
freed the kernel we could use it, calling that combination gnu/Linux.

What’s your definition of free software?

Free software is software that respects users’ freedom and community. 
It’s not about price. It’s libre, not gratis. With any program, there are 
two possibilities: either the users control the program, or the program 
controls the users. When the users control the program, that’s free 



78 nlr 113

software—they control the things they do with it, and thus it respects 
their freedom and their community. If they don’t have full control over it, 
then it’s user-subjugating, non-free proprietary software—the program 
controls the users, and the program’s owners control the program, so it 
becomes an instrument of unjust power for the owner over the users. 
For the users to have control, they need four specific freedoms—the 
concrete criteria for free software. Freedom Zero is the freedom to run 
a program however you want, for whatever purpose you have. Freedom 
One is being able to study the program’s source code and change it so 
that you can make the program run the way you wish.

What about people who can’t do that—ordinary users who aren’t 
programmers?

I don’t think that everyone has to learn how to program—not everybody 
has a talent for it. But they still deserve control over their computing 
activities. They can only get that through collective control, which implies 
the right of users to work together to exercise control over what the pro-
gram does for them. So further freedoms are necessary for collective 
control. Freedom Two is the freedom to make exact copies of a program 
and give or sell them to others. Freedom Three is being able to make 
copies of your modified versions, and give or sell them to others. This 
makes it possible for users to work together, because one of them can 
make a modified version of a program and distribute copies to others in 
the group, and they can make exact copies and pass them on. That’s free 
software—and all software should be free, because the user’s freedom 
should always be respected. Every non-free program is an injustice. The 
fact that it exists is a social and ethical problem for society; and the goal 
of the free-software movement is to put an end to that. 

You’ve argued that this foregrounding of freedom radically differentiates your 
movement from so-called ‘open source’, which started later.

Open source is an amoral, depoliticized substitute for the free-software 
movement. It was explicitly started with that intent. It was a reaction 
campaign, set up in 1998 by Eric Raymond—he’d written ‘The Cathedral 
and the Bazaar’—and others, to counter the support we were getting for 
software freedom. When it started, Eric Raymond called me to tell me 
about this new term and asked if I wanted to use it. I said, I’ll have to 
think about it. By the next day I had realized it would be a disaster for us. 



stallman: Interview 79

It meant disconnecting free software from the idea that users deserve 
freedom. So I rejected it.

It’s one of the ironies of the history of free software that its moment of greatest 
fame was associated with this term, open source, which you reject.

Because it’s not the name of a philosophy—it refers to the software, 
but not to the users. You’ll find lots of cautious, timid organizations 
that do things that are useful, but they don’t dare say: users deserve 
freedom. Like Creative Commons, which does useful, practical work—
namely, preparing licences that respect the freedom to share. But 
Creative Commons doesn’t say that users are entitled to the freedom 
to share; it doesn’t say that it’s wrong to deny people the freedom to 
share. It doesn’t actively uphold that principle. Of course, it’s much 
easier to be a supporter of open source, because it doesn’t commit you 
to anything. You could spend ten minutes a week doing things that 
help advance open source, or just say you’re a supporter—and you’re 
not a hypocrite, because you can’t violate your principles if you haven’t 
stated any. What’s significant is that, in their attempt to separate our 
software from our ideas, they’ve reduced our ability to win people over 
by showing what those ideas have achieved. People who don’t agree 
with us—people who think what matters is what’s convenient—have a 
right to present their views. But they did it in a way that misrepresents 
us, too. And that, I think, is unfair.

In that sense, it really does appear a kind of political recuperation.

I wouldn’t use that term—to recuperate means to recover from some 
sort of illness, and I don’t see who’s recovered here. I would call it 
co-optation—they co-opted our work. They did it intentionally, and they 
succeeded to a large extent. They would have succeeded 100 per cent, 
except that we fought back.

Could you explain in concrete terms how non-free software is unjust for users?

The mere fact that the users can’t add features, can’t change features, 
and can’t fix bugs is an injustice. The users of old versions of programs 
that are no longer supported are effectively compelled to change to a 
newer version, whether they want to or not. Non-free, proprietary soft-
ware is also much more likely to be malware—to contain malicious 



80 nlr 113

functionalities, of which there are many kinds. Non-free programs 
can spy on the users, report on them. Many are designed specifically 
to restrict what users can do—that’s their purpose. The proponents of 
these malicious functionalities have a term for this: they call it ‘digital 
rights management’, drm. That’s a propaganda term—I never use it. I 
call it Digital Restrictions Management.

Then there are backdoors, which means that somebody can send a com-
mand remotely to the program and tell it to do something to the user, as 
Microsoft did when it forced users to upgrade to Windows 10—whether 
it’s upgrading or downgrading is a matter of opinion—and then made 
it impossible for them to cancel. This apparently was done through 
commands sent to Windows remotely by Microsoft, which essentially 
owns those users’ computers, because it put a universal backdoor into 
Windows. Just as a computer is a universal computing engine, because, 
with the appropriate program, it would do any computation, likewise, 
these backdoors are universal, because, by forcibly installing the appro-
priate code, they could forcibly do anything to the user.

Another form of malicious functionality is tying the program to a spe-
cific remote server, as has happened with the so-called ‘Internet of 
Things’—which I call the Internet of Stings. If they shut off the server, 
the product—the refrigerator or the heating system—doesn’t work any-
more. Sometimes these products have a universal backdoor, and the 
company can forcibly change the software such that the users can’t do 
certain things anymore, unless they go through an account on the com-
pany’s server—which means it’s tracking them. Anything that you have 
to make an account on is tracking you.

How would you periodize the development of these malicious functionalities?

In the 1980s, I would say proprietary-software developers had some ethi-
cal standards—in general you could count on them not to put anything 
malicious into a program, and if something of that sort was found it 
was a real scandal. In the 1990s, Microsoft’s Windows operating system 
did spy on people in some ways: it reported to Microsoft what programs 
were installed. But there were so many objections that Microsoft had to 
take it out—and there were also commercial competitors to Windows at 
that time. Once Microsoft had established an effective monopoly, it felt it 



stallman: Interview 81

had a licence to mistreat users and reinstalled the software. Windows xp 
had a universal backdoor when it was released in 2001.

Apple and Microsoft—how would you compare them?

Microsoft and Apple have been changing places. For a long time, 
Microsoft was the main enemy of users’ freedom, and then, for the 
past ten years or so, it’s been Apple. When the first iThings came out, 
around 2007, it was a tremendous advance in contempt for users’ free-
dom because it imposed censorship of applications—you could only 
install programs approved by Apple. Ironically, Apple has retreated 
from that a little bit. If a program is written in Swift, you can now 
install it yourself from source code. So, Apple computers are no longer 
100 per cent jails. The tablets too. A jail is a computer in which instal-
lation of applications is censored. So Apple introduced the first jail 
computer with the iPhone. Then Microsoft started making computers 
that are jails, and now Apple has, you might say, opened a window into 
the jail—but not the main door. A study of mobile apps found that, on 
average, each app informed a hundred different sites about the user; 
the worst one informed 2,000 sites.2

What about Google?

Google distributes proprietary software—parts of Android are 
proprietary—which includes a backdoor. With very few exceptions, all 
Google services require running non-free software; it’s Javascript in a 
webpage, but it’s still non-free software that they insist you run on your 
computer. And of course Google does other bad things, including col-
lecting lots of data from users. Gmail goes through Google Services, and 
Google looks at it to try to learn things about people. 

Facebook, Instagram, YouTube, Skype?

I have never been a used of Facebook—I call them ‘useds’, not ‘users’, 
because Facebook is using them. If people take photos of me, I ask them 
not to post them on Facebook. Instagram is the same, as far as I’m 

2 Luigi Vigneri et al., ‘Taming the Android AppStore: Lightweight Characterization 
of Android Applications’, Eurecom Research Report RR-15-305, 27 April 2015.



82 nlr 113

concerned, since it’s the same company. The bad thing about YouTube is 
that you have to run non-free software to watch something from the site 
in the usual way, and it doesn’t offer an option to download unless you use 
specialized software. Skype is designed to be snooped on by Microsoft. 
But there are free-software alternatives—Linphone, Ekiga, Jitsi. The Free 
Software Foundation’s high-priority projects include developing real-
time voice and video chat, as well as a free phone operating system. 

How does the periodization of these technological developments relate to that 
of state surveillance?

I started to be concerned about surveillance in the 1990s, when I found 
out how portable phones were being tracked and learned about the 
spying going on through Windows. In the late 1990s, the us law that 
enabled wire-tapping on telephone exchanges was extended to digital 
servers. But the big change came after the second September 11 attacks—
the 2001 us terror attacks, that is, not the Pinochet coup in Chile. 

The nsa was given a huge amount of money for digital surveillance at 
that point.

Right. The pat-riot Act was proposed then—I always split the acronym 
like that; I’m not going to attach the word ‘patriot’ to such an un-American 
law that explicitly authorizes massive surveillance. When a program 
spies on its users and sends the data to a us company, under the Act the 
fbi can collect all that personal data without even going to court. Worse, 
the data can be used to profile people, and then manipulate them.

Was it from this point that so-called ‘big data’ really began to develop into 
something that could be harvested and scanned?

Maybe it was just beginning then, but I think the real collection of lots of 
information about people, and the warping of technology into a scheme 
to collect people’s data, didn’t start until five years or so after that. Of 
course, there are other forms of surveillance—surveillance is not solely 
done through non-free software. By rejecting non-free software, which 
we have plenty of other reasons to do, we block certain paths for surveil-
lance over us, but not all. For instance, the cameras on the street that 
recognize licence plates, and maybe now faces—we can’t block that by 
insisting on free software on our computers. The only protection against 



stallman: Interview 83

that kind of surveillance is political. We need to demand, and campaign 
for parties that will protect our privacy from government oppression.

But you think that the question of surveillance intersects with the issue of 
free software?

They’re related issues—I don’t know what it means for issues to intersect.

Okay. How is the free-software movement related politically to other issues—
does it have any natural allies?

The free-software movement doesn’t require you to have any particu-
lar political stand on other issues. And the Free Software Foundation 
doesn’t take a position on other political issues, except to defend human 
rights in computing—because the freedom to control your computing 
must be regarded as a human right. That also includes not surrendering 
your computing to anybody else’s server, because you can’t control how 
it’s done by someone else’s computer; those services that offer to do your 
computing for you are inviting you to give up your freedom. We oppose 
general surveillance, because that’s a violation of basic human rights. 
But, for instance, there are right-wingers that support the free-software 
movement. We welcome them. I don’t agree with them on other things, 
but I’m happy to have their support in campaigning for free software.

Basically, free software combines capitalist, socialist and anarchist ideas. 
The capitalist part is: free software is something businesses can use and 
develop and sell. The socialist part is: we develop this knowledge, which 
becomes available to everyone and improves life for everyone. And the 
anarchist part: you can do what you like with it. I’m not an anarchist—
we need a state so we can have a welfare state. I’m not a ‘libertarian’ in 
the usual American sense, and I call them rather ‘antisocialists’ because 
their main goal is a laissez-faire, laissez-mourir economy. People like me 
are the true libertarians. I supported Bernie Sanders for President—
Clinton was too right-wing for me—and the Green Party.

Would it be quite right to say there’s no anti-capitalist dynamic to free soft-
ware? After all, capitalism proper involves excluding most of the population 
from means of production, and free software makes such means readily availa-
ble to anyone. Market exchange is another matter, and could also characterize 
libertarian socialism, for example.



84 nlr 113

As I understand the term capitalism, it doesn’t necessarily mean that 
there are quasi-monopolies or oligopolies that politically dominate the 
world. I do condemn the current system of plutocracy very strongly. 
When I talk about capitalism, I mean private business. There is a differ-
ence between the economic system that the us has now and what it had 
in 1970. There are two different forms of capitalism, you might say—
this one I call extreme capitalism, or plutocracy, in which businesses 
dominate the state. I’m definitely against plutocracy, but I don’t wish 
to identify capitalism with plutocracy, because there are other forms of 
capitalism that I have seen in my life. Basically, businesses shouldn’t 
decide our laws.

So your political orientation would be to some kind of social democracy with 
a mixed economy?

Yes. But that’s economic; and my political orientation is democracy and 
human rights. But to have democracy means the people control the 
state, which means the businesses don’t. So, in terms of economy, yes, 
I favour having private businesses. I don’t think state restaurants could 
have made the meal we just had.

This raises the issue of how free software is related to broader questions of 
control and ownership. 

Control and ownership are not the same. Some people propose a 
capitalist-market solution to data harvesting and surveillance, which is 
that people should ‘own’ their data and be paid a tiny amount for sur-
rendering it to a company.3 This is a complete red herring and won’t 
solve any practical problems. Another approach, adopted by the new 
European Data Protection Directive, is to require people to give ‘consent’ 
for their data to be collected. That’ll help against certain things—namely, 
data collection by systems that you never knew you were using, or never 
agreed to use. But it’s so easy for them to get formal consent that it’s a 
worthless barrier. Any site that has a Facebook ‘like’ button, or a Google 
Analytics tracker, just needs to include in its Terms and Conditions—
which nobody reads—a statement saying: ‘I consent to my visit being 
recorded by various other sites that have an agreement with this one.’ 

3 See Rob Lucas, ‘Xanadu as Phalanstery’, nlr 86, March–April 2014.



stallman: Interview 85

I call this ‘manufacturing consent’. Consent regulations may be useful 
against Facebook, because it’s been tracking visitors to thousands, if not 
millions, of websites for many years, and hasn’t even bothered to get 
this sort of consent—so Facebook is in trouble if it uses any of this data. 
But in future this will probably just be a formal restriction, and not a 
matter of substance. We should not allow any collection of data that goes 
beyond the minimum that is inescapably necessary for the site to do 
its main job—and then we should develop technology to reduce that 
minimum-necessary amount.

Does that imply that, ideally, people would be doing more computation on 
their own devices?

Yes, people should. People who are not programmers are likely to 
think, ‘Well, I’ll never have control—I don’t know how to change these 
programs.’ And that may be true, that they’ll never directly change pro-
grams themselves. But when you’re using a free program to do the job, 
there’s a user community, with many users, some of whom are program-
mers. They can fix bugs, they can add features—it means the program 
will never be discontinued, because the user community will be able 
to fix the problems, and you’ll get the benefit—and not only that: the 
fact that the program is free is a powerful deterrent to malicious func-
tionalities, because the programmers are aware that they have no power 
over the users. This means they don’t get corrupted, the way proprietary 
developers do. 

This brings us back to ownership and control. With free software, you 
always own your copy, which goes with having control over it. You don’t 
own the program, in an abstract sense—well, if you wrote it, you do. 
But usually the program was written by others, so you don’t; but you 
do own your copy. Whereas, with proprietary software, the developers 
normally say that users can never own a copy. Proprietary software typi-
cally carries what I’d call an anti-socializing contract, usually known as 
end-user licence agreements, or eulas. We speak of the socialization of 
children—teaching them to be nice to other people, help and cooperate 
with others. Well, this contract does the exact opposite—people have to 
commit to not making copies for other people, not lending or giving their 
copies to others. I’ve never agreed to such a thing. Sad to say, most peo-
ple already have, without thinking about what they were ceding. 



86 nlr 113

That suggests there ought to be a kind of imperative for all users to commit 
acts of civil disobedience?

Absolutely. But, beyond that, governments should pass laws saying that 
agreements of that nature are invalid—that they have no legal force in 
this jurisdiction, no matter where they were signed. This applies to non-
negotiated contracts, where the terms are just imposed: ‘If you want 
this, agree to the contract’—there’s no chance to negotiate, and that’s the 
great abuse. It’s different when the parties actually talk about what terms 
they want; there may be no need to restrict those. But when the pow-
erful bully the weak into agreeing to contracts—we have to reject that 
strategy on a moral plane. I believe that the freedoms of free software 
should be inalienable rights of all users of software. But also, perhaps, 
the freedom to give, lend or share copies of any published work should 
be an inalienable right. Governments should actively block or prohibit 
all methods that deny people that right. These anti-socializing contracts 
are one method—they’re the legalistic method; they should be rendered 
legally without force. As for digital restrictions management, that should 
put you in prison for many years—it should be a felony to make, sell, 
lease, import products with drm.

In material terms, the biggest impact that free software has had in the world is 
its use by the technical community, on servers and by big business . . .

And that is not my goal. I wanted to give freedom to the users, not the 
companies. Yes, I believe that a company ought to have control of its 
own computing. It doesn’t make the world a better place if Company A’s 
computing is under the control of Company B. But liberating companies 
from this mistreatment is not my priority. It’s humans, it’s people, that 
I want to liberate.

But the question remains: gnu/Linux distributions are widely used for web 
servers—probably a majority of servers run them. So when people are inter-
acting with a website, they will typically be interacting with free software in 
some sense, but that doesn’t prevent the sort of abuses you’ve been detailing 
here—backdoors, data collection. 

When you visit a website, you are not using the software that’s in the web 
server—the organization which owns the website is using that software, 
to talk to you. Computer scientists are accustomed to analysing systems 



stallman: Interview 87

by saying that the thread of execution can move from one computer or 
process to another. In some scenarios, it makes sense—technically. But 
I don’t think it makes sense for a discussion about ethics, not when the 
scenario involves entities that can’t trust each other and whose interests 
conflict. The scenario in which I visit your website involves two entities, 
you and me. The programs in your web server are working for you. The 
browser and other programs in my laptop are working for me. They are 
not a single system, they are two systems which communicate. Of course 
you don’t control the software in some other entity’s website—why should 
you? And how could you? You don’t, and you shouldn’t—but that’s fine. 
If I’m talking with you, I’m not using your brain. But we’re talking, and 
you’re using your brain.

Certainly, users visiting a website are likely to be interacting with some-
one else’s computer that’s running free software, and that doesn’t 
necessarily help those users. Just because the server uses free software, 
and the company whose server it is can change it, doesn’t mean visitors 
are treated ethically. And whether or not a website is on a computer that 
is running free software, it may be collecting data about users. Also, it’s 
very likely to be sending non-free software to their browsers, to run on 
their machines. Many websites do this. That software does the visitor’s 
computing, and the visitor doesn’t control it—because it’s non-free soft-
ware, and because it’s running directly as it’s sent from the server. It’s 
not easy for the user to interpose control over that.

Suppose some of the software in the web server is not free. Who does 
that hurt? The entity whose website it is—so I would urge it to free its 
websites by switching to free software; that’s in its interest. But I have no 
reason to boycott a website just because there’s non-free software run-
ning it, just as I have no reason to boycott a restaurant because their cash 
register has non-free software in it—I don’t use their cash register. 

So how, more broadly, should we address that issue of entities on the internet 
that may well use free software on their own servers, but interact with their 
user base in very opaque ways, wielding a lot of power over data collection and 
so forth?

Collecting data is a separate issue, and it’s the responsibility of separate 
laws. Free software avoids a particular mechanism of injustice—but it’s 
not coterminous with all of ethics for computing. And this shouldn’t 



88 nlr 113

surprise people; there are various ethical issues in life. If you look at a 
store, for example, there are different ethical questions that can arise, 
and you wouldn’t expect that one requirement would fix them all. For 
instance, the store can mistreat the staff. The solution to that might be 
to encourage unionization, have strict laws to prevent wage theft. Then 
there’s discrimination, which is mistreatment of those who aren’t staff 
but would like to be. There are other issues that affect the customers 
only—for instance, are the products what they are said to be? A union 
might ensure the staff get paid, but might not care about cheating the 
customers. There are multiple ethical issues; and we shouldn’t expect that 
correcting one kind of injustice automatically corrects the other kinds.

Given that that’s the case, again, are there related political campaigns that 
you would support?

Putting an end to massive surveillance that endangers human rights. 
For this, we need to require that all systems be designed to limit the 
amount of data they can collect. You see, data, once collected, will be 
misused. The organization that collects them can misuse them; rogue 
employees of that organization can misuse them; third parties, crack-
ers, can break into the computer system and steal the data and misuse 
them; and the state can take them and misuse them. Laws restricting 
the use of the data, if properly enforced, would limit misuse by the 
organization collecting the data, and maybe to some extent misuse by 
the government—though not enough, because the state will usually give 
itself exceptions to do what it wants. It will write the laws so it’s allowed 
to get those data, and use them to find whistleblowers and dissidents. 

On the other hand, if the system is designed not to collect data, then it 
can’t be used for that, unless the state intervenes to alter it. So unless you 
can be confident that the state will respect democracy—which is hardly 
the case here—and respect the right to dissent, you should make sure 
that massive surveillance is not going on. I’ve proposed various techni-
cal approaches for designing systems to collect much less data—you can 
see them on the gnu website.4 The basic point is: when there’s another 
Snowden, how do we make sure the state can’t find that person? 

You would argue for legislative campaigns to restrict this type of surveillance?

4 See Stallman, ‘How Much Surveillance Can Democracy Withstand?’, available on 
gnu.org; originally published in Wired, 14 October 2013.



stallman: Interview 89

Legislative and juridical—there are people who go to court to try to stop 
the collection of data, or limit the use of it. My point, though, is that if we 
really want to secure our privacy, we’ve got to stop the collection of the data. 
Rules to limit how the collected data may be used may do some good, but 
they’re not very strong protection. The privacy issue is broader—the cam-
eras that recognize licence plates and track cars: this has been used to 
crack down on dissent. For instance, there was a picket at a uk coal-fired 
power plant, and suspected protesters were tracked and then stopped on 
a road by cops, who held them there until the protest was over, not bother-
ing to charge them with anything.5 It’s clear that they were not suspected 
of any crime—there were no grounds to charge them with anything. It 
was a digital attack on dissent, surveillance used to sabotage democracy. 
It would be good to establish an archive of all these incidents.

What’s your view of platform cooperativism—the idea of creating cooperative 
alternatives to things like Uber, for example?

In general I’m in favour, but it doesn’t automatically address all the 
wrongs. Mistreatment of workers may be avoided by having a worker-
owned cooperative—the workers will treat themselves as well as is 
feasible in the circumstances. But that doesn’t mean they will treat the 
customers ethically. What’s wrong with Uber? Well, one thing is, it pays 
drivers peanuts, which is why I call it Guber, and that’s a good reason 
to refuse to use it. But even worse is the way it mistreats customers, 
making them run non-free software and keeping a database of where 
each passenger has gone. Uber has actively tried to eliminate all other 
alternatives by running at a giant loss, undercutting competitors, aim-
ing to drive them all out of business. Now, if that were replaced with 
a worker-owned cooperative, they might basically keep running it the 
same way, but with higher pay for the drivers, who are now the owners—
which would not make it any more acceptable, in my view. It’s not just 
a matter of labour versus management, or whether a company is mis-
treating its workers; the rights of the customers are equally important, 
and just having a worker-owned cooperative will not guarantee that 
these are respected. 

How about a cooperative of users and workers? There’s been the idea of 
Twitter’s user base buying it out.

5 Paul Lewis and Rob Evans, ‘Activists repeatedly stopped and searched as police 
officers “mark” cars’, Guardian, 25 October 2009.



90 nlr 113

Maybe. I’m not sure whether it makes sense to do this for a ride com-
pany, though. What does it mean for the customers of a ride company 
to be co-owners? You can’t expect every passenger to do that. And if they 
were co-owners, that wouldn’t protect them at all unless they insisted 
on anonymity, and, at present, most people don’t think about it enough 
to insist. 

Perhaps the example of Twitter makes more sense; you could imagine a 
Twitter that was owned by its users and workers. And it’s imaginable that the 
user community would be able to ensure that, for example, Twitter ran only 
free software.

Oh, but that’s a different question. Of course, they ought to do that for 
their own control over their operations. Twitter probably does run mostly 
free software already, because that’s standard practice in servers. They’re 
probably running the gnu/Linux system, plus a lot of software that they 
wrote, which is free software in a trivial sense. But that’s not what affects 
justice for the users, as I’ve explained.

What do you think about the idea of creating socialized alternatives to the 
data-hoarding tech giants—as mooted in these pages by Evgeny Morozov? 6

I think it makes little difference whether data are collected by gov-
ernments or by companies, because either way the data menace 
whistleblowers and dissidents. Whatever data businesses collect, the 
state can easily get.

How about the various attempts to create federated alternatives to Facebook 
and Twitter—social-communication software like gnu social and Mastodon?

Not just attempts—they work. And from what I hear Mastodon, which 
is a sort of upward-compatible offshoot of gnu social, is getting to be 
rather popular. However, the difficulty with a social network is its ‘net-
work effect’. Suppose Facebook released all its software as free software: 
you could set up a server doing the exact same things that Facebook’s 
servers do, but you wouldn’t initially have any users. The main thing 
that pressures people to be Facebook useds is that the people they know, 
or want to communicate with, are useds as well. My ethical analysis 
of a communication system with a network effect is that the useds of 

6 Evgeny Morozov, ‘Socialize the Data Centres!’, nlr 91, January–February 2015.



stallman: Interview 91

Facebook are victim-coperpetrators. They may recognize that it mis-
treats its useds, yet they go along and become one because other people 
are pressuring them to. But, as a result of surrendering, which means 
they’re victims, they then become part of the pressure on others to do 
the same—a victim-coperpetrator, in other words. This is the same with 
Skype, and any other such system that mistreats people but which lets 
them communicate with each other. Normally, if you’re using a non-free 
program, you’re the victim of that, and so I wouldn’t rebuke you, I would 
only encourage you to stop. But, where there’s a network effect, I would 
say it’s your moral duty to cease pressuring others to use, and be used 
by, that system.

I’ve found gnu social close to a replacement for Twitter, whereas Diaspora 
was more like Facebook.

That’s what I gathered. I’m in favour of projects like these, because I 
know they’re useful for other people, but it wouldn’t fit my lifestyle. I 
just use email. You can call me the Mailman—as in True Names, Vernor 
Vinge’s science-fiction story.

It’s often argued now that attempts to deter American corporations from mas-
sive data collection, in the name of privacy or civil liberties, will allow China 
to win the new ‘space race’ in machine-learning and artificial intelligence. 
What’s your response to that?

Freedom and democracy are more important than advancing technol-
ogy. If China and the us are in a race for Orwellian tyranny, I hope the us 
loses. Indeed, the us should drop out of the race as soon as possible. Our 
society has been taught to overestimate the importance of ‘innovation’. 
Innovations may be good, and they may be bad. If we let companies 
decide which innovations we will use, they will choose the ones that give 
them more of an advantage over us.

A complementary argument is that Silicon Valley may have the advantage 
over China in terms of innovation, but that the next stage in ai will be about 
implementation—the sheer amount of data an organization can run through 
the algorithms, and the scale of its processing power—where China has the 
advantage of a population four times greater than the us. (This seems to 
be the claim of Kai-fu Lee in ai Superpowers.) How do you view these 
developments? What are the implications in terms of, first, software freedoms, 
and second, civil liberties?



92 nlr 113

Such ais will work for companies; their use will be to help companies 
manipulate people better and dominate society more. I think we should 
restrict the collection of data about people, other than court-designated 
suspects. If that holds the companies back in developing ai techniques 
to help them dominate society, so much the better.

Quantum computing is being touted as the next digital breakthrough—
variable ‘qubits’ rather than the zeros and ones of conventional 
computing—supposedly opening the way to an exponential increase in com-
putational power and machine-learning. Do you anticipate this having any 
implications for software freedom?

This means that computers could do certain tasks faster (not all tasks). 
For the most part, that would be nice but would not fundamentally 
change anything. However, in one specific case, it could do great harm: 
our current public-key encryption algorithms would be broken. People 
are trying to develop adequate replacements before quantum computers 
are big enough to be used for this.

Would the principles of the free-software movement apply to quantum com-
puting, just as to conventional computing?

Certainly. This is a general principle and doesn’t depend on details of the 
computer’s operation.

What do you think have been the major victories and setbacks of the free-
software movement?

Of victories, having a free operating system—in other words, the exist-
ence of gnu/Linux. Before that, it was impossible to do anything on a 
computer without proprietary software. Internationally, there have been 
some partial legislative victories; several countries in Latin America have 
passed laws to move the government towards free software, but they vary 
in how strong they are. The one in Peru is rather weak. Argentina has 
not passed one, but some provinces have. Ecuador was the best example 
of a system designed to cause migration, but the person that Correa put 
in charge of that agency didn’t do his whole job. I think they migrated 
the public schools, which is very important. A similar thing happened 
in Venezuela, except that the policy was not as coherently designed, and 
some medium-level officials went against it, and the ministers were 
changed over and over, and the activists had trouble getting political 



stallman: Interview 93

support from the ministers to back them up. In India, the state of Kerala 
migrated some levels of schooling to free software a decade ago—at the 
time, they couldn’t migrate the last years of high school, because those 
were controlled by a curriculum board. India adopted a central law say-
ing that there had to be a preference for what they call ‘open source’, but 
in fact they’re using the definition of free software.

What about the us public school system?

It’s just all bad. As for setbacks: the three main ones are mobile 
computing—phones and tablets, designed from the ground up to be 
non-free. The apps, which tend now to be non-free malware. And the 
Intel management engine, and more generally the low-level software, 
which we can’t replace, because things just won’t allow us to do so.

Can you imagine a situation in which there was no longer any unfree soft-
ware, or is that essentially utopian? Is there any way to get there from here?

People said that having a free operating system was utopian and impos-
sible. They argued that there was no use even trying, because it was 
so difficult. But I think that there’s a fundamental error in that ques-
tion, which is that it assumes that giving up would be okay. I don’t use 
non-free software. I don’t use the facilities that require users to run non-
free software. So, the free software we have is already useful—and I’m 
sure we can achieve a lot more if we try than if we give up. I don’t say 
that free software is more important than defeating plutocracy, or more 
important than curbing global heating; and I wouldn’t try to argue that 
people should work on one rather than another. But we’ve got to have 
people working on this one—and people in the software field can’t avoid 
the issue of free versus proprietary software, freedom-respecting versus 
freedom-trampling software. We have a responsibility, if we’re doing 
things in the software field, to do it in a way that is ethical. I don’t know 
whether we will ever succeed in liberating everyone, but it’s clearly the 
right direction in which to push.

Previous texts in the ‘New Media’ strand of this series have been Bhaskar Sunkara, 
‘Project Jacobin’ (nlr 90) and Francis Mulhern, ‘A Party of Latecomers’ (nlr 93).


